Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
B
BabelZoo
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
PLN
BabelZoo
Commits
ec1d1eb2
Unverified
Commit
ec1d1eb2
authored
Nov 17, 2019
by
PLN (Algolia)
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
feat(lstm): Capitalize, vary tokenization
parent
7a97532c
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
15 additions
and
13 deletions
+15
-13
loader.py
KoozDawa/dawa/loader.py
+2
-2
lstm.py
KoozDawa/dawa/lstm.py
+13
-11
No files found.
KoozDawa/dawa/loader.py
View file @
ec1d1eb2
...
@@ -28,8 +28,8 @@ def clean_text(lines):
...
@@ -28,8 +28,8 @@ def clean_text(lines):
In dataset preparation step, we will first perform text cleaning of the data
In dataset preparation step, we will first perform text cleaning of the data
which includes removal of punctuations and lower casing all the words.
which includes removal of punctuations and lower casing all the words.
"""
"""
lines
=
""
.
join
(
v
for
v
in
lines
if
v
not
in
string
.
punctuation
)
.
lower
()
lines
=
""
.
join
(
v
for
v
in
lines
if
v
not
in
string
.
punctuation
)
lines
=
lines
.
encode
(
"utf8"
)
.
decode
(
"ascii"
,
'ignore'
)
#
lines = lines.encode("utf8").decode("ascii", 'ignore')
return
lines
return
lines
...
...
KoozDawa/dawa/lstm.py
View file @
ec1d1eb2
...
@@ -2,7 +2,6 @@ import warnings
...
@@ -2,7 +2,6 @@ import warnings
import
numpy
as
np
import
numpy
as
np
from
keras
import
Sequential
from
keras
import
Sequential
from
keras.engine.saving
import
load_model
from
keras.layers
import
Embedding
,
LSTM
,
Dropout
,
Dense
from
keras.layers
import
Embedding
,
LSTM
,
Dropout
,
Dense
from
keras.utils
import
to_categorical
from
keras.utils
import
to_categorical
from
keras_preprocessing.sequence
import
pad_sequences
from
keras_preprocessing.sequence
import
pad_sequences
...
@@ -57,14 +56,14 @@ def generate_text(model, tokenizer, seed_text="", nb_words=5, max_sequence_len=0
...
@@ -57,14 +56,14 @@ def generate_text(model, tokenizer, seed_text="", nb_words=5, max_sequence_len=0
output_word
=
word
output_word
=
word
break
break
seed_text
+=
" "
+
output_word
seed_text
+=
" "
+
output_word
return
seed_text
.
titl
e
()
return
seed_text
.
capitaliz
e
()
def
main
():
def
main
():
should_train
=
True
should_train
=
True
nb_epoch
=
100
nb_epoch
=
100
max_sequence_len
=
61
# TODO: Test different default
max_sequence_len
=
61
# TODO: Test different default
model_file
=
"../models/dawa_lstm_
%
i.hd5"
%
nb_epoch
#
model_file = "../models/dawa_lstm_%i.hd5" % nb_epoch
tokenizer
=
Tokenizer
()
tokenizer
=
Tokenizer
()
if
should_train
:
if
should_train
:
...
@@ -79,21 +78,24 @@ def main():
...
@@ -79,21 +78,24 @@ def main():
model
.
summary
()
model
.
summary
()
model
.
fit
(
predictors
,
label
,
epochs
=
nb_epoch
,
verbose
=
5
)
model
.
fit
(
predictors
,
label
,
epochs
=
nb_epoch
,
verbose
=
5
)
model
.
save
(
model_file
)
#
model.save(model_file)
else
:
# else: # FIXME: Load and predict
model
=
load_model
(
model_file
)
#
model = load_model(model_file)
for
sample
in
[
""
,
for
sample
in
[
""
,
"L'étoile du sol"
,
"L'étoile du sol"
,
"Elle me l'a toujours dit"
,
"Elle me l'a toujours dit"
,
"Les punchlines sont pour ceux"
]:
"Les punchlines sont pour ceux"
]:
nb_words
=
5
0
nb_words
=
20
0
print
(
generate_text
(
model
,
tokenizer
,
sample
,
nb_words
,
max_sequence_len
))
print
(
generate_text
(
model
,
tokenizer
,
sample
,
nb_words
,
max_sequence_len
))
while
True
:
with
open
(
"../output/lstm.txt"
,
"a"
)
as
f
:
input_text
=
input
(
"> "
)
while
True
:
print
(
generate_text
(
model
,
tokenizer
,
input_text
,
nb_words
,
max_sequence_len
))
input_text
=
input
(
"> "
)
print
(
generate_text
(
model
,
tokenizer
,
input_text
,
nb_words
,
max_sequence_len
))
text
=
generate_text
(
model
,
tokenizer
,
input_text
,
nb_words
,
max_sequence_len
)
print
(
text
)
f
.
writelines
(
text
)
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment