Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
B
BabelZoo
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
PLN
BabelZoo
Commits
772631dd
Unverified
Commit
772631dd
authored
Nov 19, 2019
by
PLN (Algolia)
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
refact(lstm): Fix generate_text, extract params, use PoemTok
parent
d06fd636
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
36 additions
and
25 deletions
+36
-25
lstm.py
KoozDawa/dawa/lstm.py
+36
-25
No files found.
KoozDawa/dawa/lstm.py
View file @
772631dd
...
...
@@ -2,13 +2,14 @@ import warnings
import
numpy
as
np
from
keras
import
Sequential
from
keras.callbacks
import
ModelCheckpoint
,
EarlyStopping
from
keras.layers
import
Embedding
,
LSTM
,
Dropout
,
Dense
from
keras.utils
import
to_categorical
from
keras_preprocessing.sequence
import
pad_sequences
from
keras_preprocessing.text
import
Tokenizer
from
KoozDawa.dawa.loader
import
load_kawa
,
clean_text
,
load_seeds
from
KoozDawa.dawa.tokens
import
get_sequence_of_tokens
from
KoozDawa.dawa.tokens
import
PoemTokenizer
warnings
.
filterwarnings
(
"ignore"
)
warnings
.
simplefilter
(
action
=
'ignore'
,
category
=
FutureWarning
)
...
...
@@ -25,7 +26,7 @@ def generate_padded_sequences(input_sequences, total_words):
return
predictors
,
label
,
max_sequence_len
def
create_model
(
max_sequence_len
,
total_words
,
layers
=
1
00
,
dropout
=
0.1
):
# TODO finetune
def
create_model
(
max_sequence_len
,
total_words
,
layers
=
1
28
,
dropout
=
0.2
):
# TODO finetune layers/dropout
input_len
=
max_sequence_len
-
1
model
=
Sequential
()
...
...
@@ -39,7 +40,9 @@ def create_model(max_sequence_len, total_words, layers=100, dropout=0.1): # TOD
# Add Output Layer
model
.
add
(
Dense
(
total_words
,
activation
=
'softmax'
))
model
.
compile
(
loss
=
'categorical_crossentropy'
,
optimizer
=
'adam'
)
model
.
compile
(
optimizer
=
'adam'
,
# TODO: Try RMSprop(learning_rate=0.01)
loss
=
'categorical_crossentropy'
,
# TODO: Try sparse_categorical_crossentropy for faster training
metrics
=
[
'accuracy'
])
# TODO: Try alternative architectures
# https://medium.com/coinmonks/word-level-lstm-text-generator-creating-automatic-song-lyrics-with-neural-networks-b8a1617104fb#35f4
...
...
@@ -47,53 +50,61 @@ def create_model(max_sequence_len, total_words, layers=100, dropout=0.1): # TOD
def
generate_text
(
model
:
Sequential
,
tokenizer
:
Tokenizer
,
seed_text
=
""
,
nb_words
=
5
,
max_sequence_len
=
0
)
->
str
:
word_indices
=
{
v
:
k
for
k
,
v
in
tokenizer
.
word_index
.
items
()}
output
=
seed_text
for
_
in
range
(
nb_words
):
token_list
=
tokenizer
.
texts_to_sequences
([
seed_tex
t
])[
0
]
token_list
=
tokenizer
.
texts_to_sequences
([
outpu
t
])[
0
]
token_list
=
pad_sequences
([
token_list
],
maxlen
=
max_sequence_len
-
1
,
padding
=
'pre'
)
predicted
=
model
.
predict_classes
(
token_list
,
verbose
=
2
)
output_word
=
""
for
word
,
index
in
tokenizer
.
word_index
.
items
():
if
index
==
predicted
:
output_word
=
word
break
seed_text
+=
" "
+
output_word
return
seed_text
.
capitalize
()
predicted
=
model
.
predict_classes
(
token_list
,
verbose
=
2
)[
0
]
output
+=
" "
+
word_indices
[
predicted
]
return
output
.
capitalize
()
def
main
():
should_train
=
True
#
should_train = True
# model_file = "../models/dawa_lstm_%i.hd5" % nb_epoch
nb_words
=
20
nb_epoch
=
100
nb_words
=
200
tokenizer
=
Tokenizer
()
nb_layers
=
128
dropout
=
.
2
tokenizer
=
PoemTokenizer
()
# if should_train:
lines
=
load_kawa
()
corpus
=
[
clean_text
(
x
)
for
x
in
lines
]
print
(
"Corpus:"
,
corpus
[:
5
])
print
(
"Corpus:"
,
corpus
[:
10
])
inp_sequences
,
total_words
=
get_sequence_of_tokens
(
corpus
,
tokenizer
)
inp_sequences
,
total_words
=
tokenizer
.
get_sequence_of_tokens
(
corpus
)
predictors
,
label
,
max_sequence_len
=
generate_padded_sequences
(
inp_sequences
,
total_words
)
model
=
create_model
(
max_sequence_len
,
total_words
)
model
=
create_model
(
max_sequence_len
,
total_words
,
layers
=
nb_layers
,
dropout
=
dropout
)
model
.
summary
()
model
.
fit
(
predictors
,
label
,
epochs
=
nb_epoch
,
verbose
=
5
)
file_path
=
"../models/dawa_lstm
%
i-d
%.1
f-{epoch:02d}_
%
i-{accuracy:.4f}.hdf5"
%
(
nb_layers
,
dropout
,
nb_epoch
)
checkpoint
=
ModelCheckpoint
(
file_path
,
monitor
=
'accuracy'
,
save_best_only
=
True
)
# print_callback = LambdaCallback(on_epoch_end=on_epoch_end)
early_stopping
=
EarlyStopping
(
monitor
=
'accuracy'
,
patience
=
5
)
callbacks_list
=
[
checkpoint
,
early_stopping
]
for
i
in
range
(
nb_epoch
):
model
.
fit
(
predictors
,
label
,
initial_epoch
=
i
,
epochs
=
i
+
1
,
verbose
=
2
,
callbacks
=
callbacks_list
)
# model.save(model_file)
# else: # FIXME: Load and predict
# else: # FIXME: Load and predict
, maybe reuse checkpoints?
# model = load_model(model_file)
for
sample
in
load_seeds
(
lines
):
print
(
generate_text
(
model
,
tokenizer
,
sample
,
nb_words
,
max_sequence_len
))
for
i
,
seed
in
enumerate
(
load_seeds
(
lines
,
3
)):
output
=
generate_text
(
model
,
tokenizer
,
seed
,
nb_words
,
max_sequence_len
)
print
(
"
%
i
%
s ->
%
s"
%
(
i
,
seed
,
output
))
with
open
(
"./output/
lstm
.txt"
,
"a+"
)
as
f
:
with
open
(
"./output/
dawa
.txt"
,
"a+"
)
as
f
:
while
True
:
input_text
=
input
(
"> "
)
text
=
generate_text
(
model
,
tokenizer
,
input_text
,
nb_words
,
max_sequence_len
)
print
(
text
)
f
.
writelines
(
text
)
f
.
writelines
(
"
%
s
\n
"
%
text
)
if
__name__
==
'__main__'
:
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment