Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
B
BabelZoo
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
PLN
BabelZoo
Commits
61a1d7a9
Unverified
Commit
61a1d7a9
authored
Nov 17, 2019
by
PLN (Algolia)
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
feat(lstm): refact, predict, nocomment
parent
63e2e5b7
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
30 additions
and
16 deletions
+30
-16
lstm.py
KoozDawa/lstm.py
+30
-16
No files found.
KoozDawa/lstm.py
View file @
61a1d7a9
...
@@ -4,6 +4,7 @@ import warnings
...
@@ -4,6 +4,7 @@ import warnings
import
numpy
as
np
import
numpy
as
np
from
keras
import
Sequential
from
keras
import
Sequential
from
keras.engine.saving
import
load_model
from
keras.layers
import
Embedding
,
LSTM
,
Dropout
,
Dense
from
keras.layers
import
Embedding
,
LSTM
,
Dropout
,
Dense
from
keras.preprocessing.text
import
Tokenizer
from
keras.preprocessing.text
import
Tokenizer
from
keras.utils
import
to_categorical
from
keras.utils
import
to_categorical
...
@@ -26,10 +27,10 @@ def load():
...
@@ -26,10 +27,10 @@ def load():
content
=
f
.
readlines
()
content
=
f
.
readlines
()
all_lines
.
extend
(
content
)
all_lines
.
extend
(
content
)
all_lines
=
[
h
for
h
in
all_lines
if
all_lines
=
[
h
for
h
in
all_lines
if
h
[
0
]
not
in
[
"["
,
"#"
]
h
[
0
]
!=
"["
]
]
len
(
all_lines
)
len
(
all_lines
)
print
(
"Loaded
data:"
,
all_lines
[
0
]
)
print
(
"Loaded
%
i lines of data:
%
s."
%
(
len
(
all_lines
),
all_lines
[
0
])
)
return
all_lines
return
all_lines
...
@@ -78,7 +79,7 @@ def generate_padded_sequences(input_sequences, total_words):
...
@@ -78,7 +79,7 @@ def generate_padded_sequences(input_sequences, total_words):
return
predictors
,
label
,
max_sequence_len
return
predictors
,
label
,
max_sequence_len
def
create_model
(
max_sequence_len
,
total_words
):
def
create_model
(
max_sequence_len
,
total_words
,
layers
=
100
,
dropout
=
0.1
):
# TODO finetune
input_len
=
max_sequence_len
-
1
input_len
=
max_sequence_len
-
1
model
=
Sequential
()
model
=
Sequential
()
...
@@ -86,8 +87,8 @@ def create_model(max_sequence_len, total_words):
...
@@ -86,8 +87,8 @@ def create_model(max_sequence_len, total_words):
model
.
add
(
Embedding
(
total_words
,
10
,
input_length
=
input_len
))
model
.
add
(
Embedding
(
total_words
,
10
,
input_length
=
input_len
))
# Add Hidden Layer 1 - LSTM Layer
# Add Hidden Layer 1 - LSTM Layer
model
.
add
(
LSTM
(
100
))
# TODO finetune
model
.
add
(
LSTM
(
layers
))
model
.
add
(
Dropout
(
0.1
))
# TODO finetune
model
.
add
(
Dropout
(
dropout
))
# Add Output Layer
# Add Output Layer
model
.
add
(
Dense
(
total_words
,
activation
=
'softmax'
))
model
.
add
(
Dense
(
total_words
,
activation
=
'softmax'
))
...
@@ -113,25 +114,38 @@ def generate_text(seed_text, nb_words, model, max_sequence_len):
...
@@ -113,25 +114,38 @@ def generate_text(seed_text, nb_words, model, max_sequence_len):
def
main
():
def
main
():
lines
=
load
()
should_train
=
True
nb_epoch
=
20
model_file
=
"../models/dawa_lstm_
%
i.hd5"
%
nb_epoch
max_sequence_len
=
5
# TODO: Test different default
corpus
=
[
clean_text
(
x
)
for
x
in
lines
]
if
should_train
:
print
(
corpus
[:
10
]
)
lines
=
load
(
)
inp_sequences
,
total_words
=
get_sequence_of_tokens
(
corpus
[:
10
])
# Fixme: Corpus cliff for debug
corpus
=
[
clean_text
(
x
)
for
x
in
lines
]
print
(
inp_sequence
s
[:
10
])
print
(
corpu
s
[:
10
])
predictors
,
label
,
max_sequence_len
=
generate_padded_sequences
(
inp_sequences
,
total_word
s
)
inp_sequences
,
total_words
=
get_sequence_of_tokens
(
corpu
s
)
print
(
predictors
,
label
,
max_sequence_len
)
print
(
inp_sequences
[:
10
]
)
model
=
create_model
(
max_sequence_len
,
total_words
)
predictors
,
label
,
max_sequence_len
=
generate_padded_sequences
(
inp_sequences
,
total_words
)
model
.
summary
(
)
print
(
predictors
,
label
,
max_sequence_len
)
model
.
fit
(
predictors
,
label
,
epochs
=
10
,
verbose
=
5
)
model
=
create_model
(
max_sequence_len
,
total_words
)
model
.
summary
()
model
.
fit
(
predictors
,
label
,
epochs
=
nb_epoch
,
verbose
=
5
)
model
.
save
(
model_file
)
else
:
model
=
load_model
(
model_file
)
print
(
generate_text
(
""
,
10
,
model
,
max_sequence_len
))
print
(
generate_text
(
""
,
10
,
model
,
max_sequence_len
))
print
(
generate_text
(
"L'étoile"
,
10
,
model
,
max_sequence_len
))
print
(
generate_text
(
"L'étoile"
,
10
,
model
,
max_sequence_len
))
while
True
:
input_text
=
input
(
"> "
)
print
(
generate_text
(
input_text
,
10
,
model
,
max_sequence_len
))
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
main
()
main
()
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment