Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
B
BabelZoo
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
PLN
BabelZoo
Commits
5c3a3ea9
Unverified
Commit
5c3a3ea9
authored
Nov 26, 2019
by
PLN (Algolia)
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
refactor(boulbi): Leverage refactoring
parent
8e6f7594
Show whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
27 additions
and
40 deletions
+27
-40
tweet.py
KoozDawa/tweet.py
+2
-0
boulbi.py
LeBoulbiNet/boulbi.py
+24
-39
lstm.py
glossolalia/lstm.py
+1
-1
No files found.
KoozDawa/tweet.py
View file @
5c3a3ea9
...
...
@@ -19,6 +19,8 @@ def tweet():
# des glaçons pour les yeux brisées
# je suis pas juste un verbe que t'observe
# si tu sais rien pas d'âme de la vie
Tweeper
(
"KoozDawa"
)
.
tweet
(
"tassepés en panel"
)
...
...
LeBoulbiNet/boulbi.py
View file @
5c3a3ea9
from
datetime
import
datetime
from
keras.callbacks
import
ModelCheckpoint
,
EarlyStopping
from
glossolalia.loader
import
load_seeds
,
load_text
from
glossolalia.lstm
import
generate_padded_sequences
,
create_model
,
generate_text
from
glossolalia.tokens
import
PoemTokenizer
from
glossolalia.lstm
import
LisSansTaMaman
def
m
ain
():
def
tr
ain
():
# should_train = True
# model_file = "../models/dawa_lstm_%i.hd5" % nb_epoch
nb_words
=
20
nb_epoch
=
50
nb_layers
=
64
dropout
=
.
2
tokenizer
=
PoemTokenizer
()
# TODO finetune layers/dropout
validation_split
=
0.2
lstm
=
LisSansTaMaman
(
nb_layers
,
dropout
,
validation_split
,
debug
=
True
)
filename_model
=
"../models/boulbi/boulbi_lstm
%
i-d
%.1
f-{epoch:02d}_
%
i-{accuracy:.4f}.hdf5"
%
(
nb_layers
,
dropout
,
nb_epoch
)
filename_output
=
"./output/boulbi_
%
i-d
%.1
f_
%
s.txt"
%
(
nb_layers
,
dropout
,
datetime
.
now
()
.
strftime
(
"
%
y
%
m
%
d_
%
H
%
M"
))
callbacks_list
=
[
ModelCheckpoint
(
filename_model
,
monitor
=
'val_accuracy'
,
period
=
10
,
save_best_only
=
True
),
EarlyStopping
(
monitor
=
'val_accuracy'
,
patience
=
5
)]
# if should_train:
corpus
=
load_text
()
print
(
"Corpus:"
,
corpus
[:
10
])
inp_sequences
,
total_words
=
tokenizer
.
get_sequence_of_tokens
(
corpus
)
predictors
,
label
,
max_sequence_len
=
generate_padded_sequences
(
inp_sequences
,
total_words
)
model
=
create_model
(
max_sequence_len
,
total_words
,
layers
=
nb_layers
,
dropout
=
dropout
)
model
.
summary
()
file_path
=
"../models/boulbi/boulbi_lstm
%
i-d
%.1
f-{epoch:02d}_
%
i-{accuracy:.4f}.hdf5"
%
(
nb_layers
,
dropout
,
nb_epoch
)
checkpoint
=
ModelCheckpoint
(
file_path
,
monitor
=
'accuracy'
,
period
=
10
,
save_best_only
=
True
)
# print_callback = LambdaCallback(on_epoch_end=on_epoch_end)
early_stopping
=
EarlyStopping
(
monitor
=
'accuracy'
,
patience
=
5
)
callbacks_list
=
[
checkpoint
,
early_stopping
]
lstm
.
create_model
(
corpus
)
with
open
(
filename_output
,
"a+"
)
as
f
:
for
i
in
range
(
0
,
nb_epoch
,
10
):
model
.
fit
(
predictors
,
label
,
initial_epoch
=
i
,
epochs
=
min
(
i
+
10
,
nb_epoch
),
verbose
=
2
,
callbacks
=
callbacks_list
)
for
seed
in
[
""
,
"Je"
,
"Tu"
,
"Le"
,
"La"
,
"Les"
,
"Un"
,
"On"
,
"Nous"
]:
print
(
generate_text
(
model
,
tokenizer
,
seed
,
nb_words
,
max_sequence_len
)
)
lstm
.
fit
(
epochs
=
min
(
i
+
10
,
nb_epoch
),
initial_epoch
=
i
,
callbacks
=
callbacks_list
,
validation_split
=
validation_split
)
# model.save(model_file)
# else: # FIXME: Load and predict, maybe reuse checkpoints?
# model = load_model(model_file)
print
(
lstm
.
predict_seeds
(
nb_words
))
for
i
,
seed
in
enumerate
(
load_seeds
(
corpus
,
5
)):
output
=
generate_text
(
model
,
tokenizer
,
seed
,
nb_words
,
max_sequence_len
)
output
=
lstm
.
predict
(
seed
,
nb_words
)
print
(
"
%
i
%
s ->
%
s"
%
(
i
,
seed
,
output
))
f
.
writelines
(
output
)
with
open
(
"./output/boulbi.txt"
,
"a+"
)
as
f
:
while
True
:
input_text
=
input
(
"> "
)
text
=
generate_text
(
model
,
tokenizer
,
input_text
,
nb_words
,
max_sequence_len
)
text
=
lstm
.
predict
(
input_text
,
nb_words
)
print
(
text
)
f
.
writelines
(
"
%
s
\n
"
%
text
)
def
debug_unrandomize
():
from
numpy.random
import
seed
from
tensorflow_core.python.framework.random_seed
import
set_random_seed
# set seeds for reproducibility
set_random_seed
(
2
)
seed
(
1
)
if
__name__
==
'__main__'
:
debug_unrandomize
()
main
()
train
()
glossolalia/lstm.py
View file @
5c3a3ea9
...
...
@@ -56,7 +56,7 @@ class LisSansTaMaman(object):
validation_split
=
validation_split
,
epochs
=
epochs
,
initial_epoch
=
initial_epoch
)
def
predict_seeds
(
self
,
seeds
:
List
[
str
]
=
None
,
nb_words
=
None
):
def
predict_seeds
(
self
,
nb_words
=
None
,
seeds
:
List
[
str
]
=
None
):
if
seeds
is
None
:
seeds
=
[
""
,
"Je"
,
"Tu"
,
"Le"
,
"La"
,
"Les"
,
"Un"
,
"On"
,
"Nous"
]
return
[
self
.
predict
(
seed
,
nb_words
)
for
seed
in
seeds
]
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment